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Relationship between dynamical heterogeneities and stretched exponential relaxation
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We identify dynamical heterogeneities as an essential prerequisite for stretched exponential relaxation in
dynamically frustrated systems. This heterogeneity takes the form of ordered domains of finite but diverging
lifetime for particles in atomic or molecular systems, or spin states in magnetic materials. At the onset of the
dynamical heterogeneity, the distribution of time intervals spent in such domains or traps becomes stretched
exponential at long times. We rigorously show that once this is the case the autocorrelation function of the
renewal process formed by these time intervals is also a stretched exponential at long times.
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[. INTRODUCTION cesses as the temperature approadijeshe glass-transition
temperatur¢ 11-13.
Stretched exponential relaxation (SER, I(t)~ These spatial heterogeneities occur over time scales that

exf —(t/7)?], describes the relaxation of pure glasses venyare long with respect to the basic unit time of the systems—
accurately, often over very wide ranggk|. For example, one step in coupled maps and a lattice vibration in super-
SER describes equally well stress experiments on amorphowusoled liquids—but shorter than the macroscopic relaxation,
Se, centered on £Gs, as well as spin-polarized neutron scat-where materials are known to be homogeneous. As the tem-
tering experiments, centered on f0s, both with the same perature or the driving force is decreased, these regions be-
value of B, over a time range of more than?0SER also come more and more stable and might overtake the whole
accurately describes the stress relaxation of the supercosample at a transition temperature. Although the nature of
ducting transition temperatures in the cuprates, probably aspatial heterogeneities and their relation to the macroscopic
sociated with the two-gap domain structure revealed by highdynamics remain incompletely understood, there is a consid-
resolution scanning tunneling microscof®]; moreover, the erable amount of work that relates directly to this issue. The
measured value g8 is the predicted value, 3/5, for YBCO, mode-coupling theory describes the dynamics from the lig-
by far the most extensively studied cuprate, with the highestuid phase into the supercooled regime and makes quantita-
quality samples. The agreement is such that it has recentlyve predictions that have been verified numerically in many
been proposed that the SER be used as an independent megstems{14,15. It cannot yet describe accurately the very
sure of sample quality in these materigd3. Phillips’ review  long time behavior in the supercooled regime, howéét.
[1] gives many more examples and demonstrates the pow&umerically, dynamical heterogeneities have been studied
of SER as a guide to understanding the dynamical propertiassing a wide range of criteria tied to various aspects of this
of intrinsic glasses, especially network glasses. One of thé&ature[5,16,17. Recently, however, some groups have fo-
most spectacular examples was the successful predietion cused on the renewal or mean first-passage fitBeand the
of the long- and short-preparation-time valuesBodf ortho-  waiting-time distribution, which provide some link to the
terphenyl (OTP), as measured by multidimensional NMR. structure of the energy landscajde,2q.
OTP is the purest organic glass former available commer- Although both the dynamical heterogeneities and the
cially; the predicted values were 0.43 and 0.60, and the obstretched exponential behavior are characteristics of many
served values were 0.42 and 0.59. frustrated systemge.g., supercooled liquid21]), it is not

It appears that SER may arise as a result of spatial inhcelear what the relation between these two properties is. In
mogeneities that are quenched into macroscopically purehis paper, we address this question and show that dynamical
non-phase-separated glasses on a microscopic scale as tragserogeneities can be directly responsible for the observa-
or sinks that appear as part of the glass-forming process. Th@n of stretched exponential relaxation in coupled map lat-
existence of these inhomogeneities is difficult to detect extices. We also show that these results are applicable to super-
perimentally, but they readily account for SER, and predictcooled liquids and can provide a microscopic basis for the
correctly the values of in many experimentgl]. Dynami-  stretched exponential relaxation in these systems, in line with
cal heterogeneities have been seen experimentally and nthe observations of Denngt al. on the long time dynamics
merically in glasses and supercooled liquifis], spin-glass  of metabasin hoppinfR0].
models[7,8], Lennard-Jones alloy mixtures with ellipsoidal ~ Recently, Huntet al. found that the distribution of the
probes[9], as well as in coupled chaotic systems such agenewal time of a certain stochastic process measured in a
diode-resonator array4.0]. In particular, the concept of dy- one-dimensional lattice of coupled diode resonators could be
namical heterogeneities has emerged as critical for the dditted to a stretched exponential function over six orders of
scription of the microscopic dynamics associated with themagnitudeg[10]. Simulations on a related model of nonlinear
dramatic slowing down of the relaxation and diffusion pro- maps diffusively coupled via short range interactions show
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that the fit can be extended to more than nine orders of magnuch more rapidly than the random walker is a clear indica-

nitude, ruling out any other power law or simple combina-tion that this model is physically relevant. The way in which

tion of pure exponentialgl0,22. The quality of the fit in this  this happens was illustrated in Fig. 8 of I: the surviving pe-

system is sufficient to distinguish the region of the parametefiodic domains are those that have avoided chaotic regions.

space where the dynamics is described by a power-law dis- We also emphasize that in this simple model the behavior

tribution coupled with an exponential cutoff from the really Of the stretching exponeng as a function of a control pa-

stretched exponential distribution®eferencd22] contains ~ fameterr is similar to the dependence @fon the tempera-

background information important for understanding the refure in both three{3D) [28] and one-dimensiondlLD) [8]

sults of the present work and will be referred to as | in theSPin-glass models. This similarity captures not only the

following.) qualitative tendency foB to decrease with decreasingor
These simulations | also demonstrated the importance of). but also the quantitative agreement in the lover low-

the effect of the system’s size on its dynamics. WhileT) limit 3~1/3. The same lowest value gfwas obtained in

stretched exponentials are sufficiently robust and are obstudies of random walks on fractd89—31].

served even in some small samples, the quality of such fits is

much poorer than in the big samples. This is in direct anal- Il. RESULTS

ogy with real experimental results and supports the observa-

tion that the quality of the samples is crucial for obtaining

unambiguous stretched exponential behavior and meaningful The nonlinear model of Ref{10], used to reproduce

values of the exponeng [1,3]. qualitatively the experimental system, is a one-dimensional
Using simulations on this and other models, as well ashain ofN diffusively coupled nonlinear deterministic maps,

some analytical results, we show here ttigtthe stochastic f(x), with a coupling constant and periodic boundary con-

process studied in Ref10] and | can be identified with a ditions. The time evolution of this system is discrete and is

renewal procesf23], (2) a stretched exponential distribution described by the following iterative equation:

of the renewal time implies a similar shape for the decay of

the two-point autocorrelation function, art@) renewal pro- _ a

cesses are present in a supercooled liquid and play a centra)f”(Hl)_(l_ ) f (xa(1))+ E{f(X”*l(t))Jrf(X”“(t))}’

role in its dynamics. 1)
Granted the universal features of SER, readers unfamiliar

with chaos theory and coupled maps may not see immedwhich, given initial conditionsx,(0) for each siten

ately the relevance of these mathematical tools to under=1,2, ... N, generates a time seri¢g,(t)}. The interac-

standing the dynamical properties of supercooled liquids antlon is totalistic and involves only the nearest neighbors.

glasses. Even the successful predictions of the (sapk) Following 1, in this study we use the logistic maf{x)

model[1,24] appear to be unexpected. For instance, the sur=rx(1—x).

vival probability of a random walker in the presence of ran-  Following the analysis of the experimental data, the sto-

domly distributed static traps crosses over from exponentiathastic process of interest is represented by a coarse-grained

to SER only at longer times where very few- (0 % for  variable defined as

10% trap$ of the walkers have survivef25]. In our ex-

amples of steady-state dynamics in coupled maps, the analo- an(t) =sgnXn(t) =X, t=0,24 .. ., 2

gous crossover in trap-time distributiopgt) occurs near

1071 to 10 2xmaxp(t)}, depending on the value of a con- where the quantity,(t) is defined in Eq.(1) andxy, is a

trol parameter. Even the latter number is small compared teertain threshold value. The basic dynamics of the coupled

the crossovers observed, for example, for relaxation of th@scillators being period 2, the analysis is also done over even

first peak in the structure factor in molecular dynamics simu<{or odd time steps.

lations (MDSs) of crystallization-avoiding soft sphere mix- ~ This model shows a stretched exponential distribution of

tures[26], which occur near 3/4 of the maximum value. The the renewal(or trap times, which are defined in Sec. II B,

reason for these differences is that the systems chosen fover a wide range of the control parametgwhich plays a

MDSs already represent prepared states with strong glasgele akin to temperature as can be seen in Fig. 1. This figure

forming tendencies. The random walker with random trapsshows the stretching exponeff and the time scale, as

model contains spatial inhomogeneities, which we will showfunctions of the control parameter The values of3, and

represent an essential feature necessary for SER, and which were obtained by least-squares fitting of the long-time

are absent from some popular models of static glass structugart of the trap-time distributions for a chain Nf=10 000

such as mode-coupling theof27]. That model does not coupled logistic mapg(x)=rx(1—x) with the expression

contain the collapse of phase space that occurs as the liquilexy —(t/7)?0]. Although Bo(r) and ro(r) are nonmono-

is supercooled to the glass transition, and that is why SERonic, the overall behavior is similar to the results in both 3D

appears only at very long times. However, it does contain thg28] and 1D[8] spin-glass models. This broad similarity cap-

correct dimensional dependence of diffusive behavior thatures not only the qualitative tendency {8rto decrease with

leads to the relatiopB=d/(d+2), which is important for decreasing (or T), but also the quantitative agreement in

comparisons to experiment. That the one-dimensionathe low+ (or low-T) limit 8~1/3, the same limit as that

coupled map lattice discussed here reaches a steady statetained in studies of random walks on fract29—31.

A. Properties of the coupled map model

041110-2



RELATIONSHIP BETWEEN DYNAMICAL . .. PHYSICAL REVIEW E 68, 041110(2003

0.9 dows are also interspersed with periodic ones, and the
stretched exponential behavior of the trap-time distribution,

with B, greater than or about 1/3, is recovered only for some
values ofr. This interesting behavior suggests that SER is

uncovering an additional aspect of the dynamics of coupled
map lattices. A full analysis of this behavior lies outside the

framework of this paper, but we plan to return to studying it

elsewhere.

In other models and experiments, the time scalgrows
monotonically with decreasing temperature. It is not the case
here, although the values @f are greatest at the low{and
low-By) end, following the general trend observed else-
where.

= 2007

B. Renewal processes in coupled maps

The stochastic process,(t) is a renewal procesg23]
provided that the time intervalsenewal timesbetween two
subsequent zero crossings are statistically independent ran-
dom variables. We tested the independence of these time
intervals for the present model, E@), by calculating the
distributions of the time intervals following time intervals of
a specified length. The distributions were identical regardless
of the length of the preceding time intervals.

In general, a renewal process is defined so th@)=
+1 for to<t<tq, o(t)=-—1 for t;<t=<t,, o(t)=+1 for
t,<t=<tg, and so on. The renewal processes are the simplest
possible stochastic processes readily susceptible of probabil-
ity theoretical analysi$33]. The dynamics represented by
such processes can be understood in terms of transition prob-
abilities between the two possible states =1 [34].

In I, it is shown that the existence of very long renewal
: time intervalst, ,;—t,, associated with the stretched expo-

0 3.85 39 3.95 4 nential distribution can be attributed to the presence of time-
r limited ordered domaingor trapg with a dominant spatial
period of four sites. Figure(3) shows a typical distribution

FIG. 1. Bo (@) and 7o (b) as functions of the logistic map pa- of the renewal time intervalr trap times for this model.
rameterr. Dots correspond to the least-squares-fit values and the These results suggest that the dynamical heterogeneity
thin solid line is drawn as a guide to the eye. The vertical dashegh5nifested by the presence of time-limited ordered domains
lines demarcate the discontinuitiesf#g(r) and7o(r). They corre- 414 he at the origin of the stretched exponential relaxation
spond very well to the positions of the periodic cascades in thqn supercooled liquids and glasses, and the renewal processes
bifurcation diagram of the uncoupled logistic map showfdn (d) 014 provide a simple picture for describing heterogeneous
shows the bifurcation diagram for a site in the coupled map Iatticedynamics in these condensed phases. In order to support
Inset in(b) magnifies the right hand side of the main plot where thethese two affirmations. we first need to s.how tHatthere is
variation of 7y with r is not distinguishable. The accuracy®f and 2 one-to-one correspo,ndence between renewal processes and
7o Obtained by a least-squares fit to the long-time part of the traps, ~. . . . .
time distribution is within 15%. their time autocorrel_anon functions, because exper[mentally

measurable relaxation responses are mathematically de-
scribed by autocorrelation functions of certain dynamical
map lattice Fig. (d) appears to be uniform with respectrto Z:gggéesar?gg tr;g[ r(il;(ae(\:/\tllayl g¥02:§ ;) ebsszrr\éaglri Srg:temaéu%rgr'_
(rjnoc\)g? ;?(;; f)'lszgriSs’etsh?rgr%nt?g?ggt)rt]g?;(f%g iggldazgg?ogis cooled liquids and glasses and can be calculated effectively,
. i . . exhibiting unambiguous stretched exponential distributions
tic map and the values ot 4 chaotic orbits are interspersed of renewal time intervals
with period cascades as seen in Fi@)1i.e., the approach to The relation between .the autocorrelation function
full chaos ag goes to 4 is not uniformFor an explanation
of the concept of bifurcation diagrams, see, e.g., R&d].) Ct)=(a(t)o(t'+1))y 3
Interestingly, the lowest value g8, is attained within the
widest window of the period-3 cascade in the bifurcationof a renewal process(t) and the distributiorp(t) of time
diagram of the uncoupled logistic map. About and below intervalst, ,;—t, between the zero crossingsr, in other
=3.82, in the coupled map chain, very narrow chaotic win-words, renewalsof this process was recently studied for a

Although the bifurcation diagram for a site in the coupled
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1o L T S e —— o1 M- p(w)]
Ceq(u)=—<1——A . (6)
Ul (Hull+p(u)]
107 Using the expression above fptu), one finds, for the sin-
ﬁ gular part of the correlation function at equilibrium,
z . )
£10” ~ Psing U
o Ceq,singgu) ~ W (7)
1070 Since the behavior at large times is governed by its singular
part, we get
Coyt)~p(D)I(t). (8)
This implies that for a stretched exponentj@t) in the
10| asymptotic limitCe(t)<p(t) [35].

The range of relevance for this analytical result can be
confirmed numerically by studying the statistical properties
of a computer-generated sequencgmfeudgrandom num-
bers distribution according to the stretched exponential prob-
ability density function(PDF Eq. (4). Using the fundamen-
tal transformation law of probabilitieg37], given a
computer-generated sequence (pseudgrandom numbers
{6} distributed uniformly in the interval € #<1, we apply
a transformation rulé= 7,[ Q~*(1/8,,6) 10 so that the re-

. . sulting sequencét} is distributed according to the stretched
10 12 14 exponential PDFp(t). In order to compute the inverse regu-
larized incomplete gamma functid@ *(a, §), we used the
software from Refs[38,39.

C (9, plt)/<t>
al

—_
oI
@

6 8
(t/ro)Po

FIG. 2. (a) Second derivativ€”(t) of the autocorrelation func- ! ) ) o )
tion C(t) of the coarse-grained orbit(t), Eq. (2), with r=3.83 Given a sequence of time intervals distributed according

(solid line) compared to the asymptotic behavje(t)/(t) given by 0 @ prescribed PDF, it is straightforward to construct the
Eq. (8) (dashed ling Dash-dotted line shows the stretched expone-corresponding renewal process and its autocorrelation func-
netial fit to the long-time part op(t) with 7,=59+9 and B, tion and second derivative. The second derivative is calcu-
=0.39+0.05. (b) The same as itfa), but for the renewal process lated numerically, after applying a smoothing function before
computer generated with the renewal times distributed according teach derivative to improve the quality of the operation.
Eq. (4) with 7o=5 andBy,=0.4. In this case, the lines correspond-  The resultingC”(t) and C(t), shown in Figs. 2 and 3,
ing to the dashed and dash-dotted linegancoincide. respectively, demonstrate clearly that the correspondence be-
tweenp(t) and C"(t) holds for long times foiC(t) calcu-
range of distributiond23]. Following this approach, Go- lated both for the coupled map lattice model, Ed), with
dreche and Luck also showd®5] that C(t) corresponding  f(x) =rx(1—x), r=3.83,a=0.25, andN= 1000, and for a
to the stretched exponential distribution renewal process where the renewal time-interval distribution
is stretched exponential by prescriptid’(t) obtained nu-
B merically agrees witlp(t)/{t), Eq. (8), without any free pa-
p(t)= —ﬂexr:[—(tlro)ﬁo] (4) rameter W!thln a multiplicative factor of the order of unity.
7ol'(Bo ) Interestingly, for the range measure@i(t) also follows
the stretched exponential form, albeit with somewhat differ-
can also be represented by a stretched exponential at lofgit parametersr, and B.. This indicates that the true
times: asymptotic regime fo€(t) or p(t) may be reached at longer
time with a gradual approach toward this long-time behavior.
This agrees with the theoriesee, e.g.[24]) where the
stretched exponential functions are accompanied by time-
o , dependent multiplicative factors. For practical purposes,
We can Laplace transform the distribution of intervals,yever, it is remarkable that the stretched exponential fit to
p(t), obtaining a function with a small singular papu)  the correlation function agrees wit(t), starting with a
=1—(t)u+ - +pgngu), u—0 [36], where (t) value well observed experimentally between 3/4 and 1/2
=100 (2/B0) /T (1/8,) is the first moment op(t). From Ref. X maxC(t)}, and following with very high accuracy for sev-
[23], we also know that the Laplace transform of the auto-eral orders of magnitude to the regime beyond the reach of
correlation function is given by the experiments.

C(t)~Cgst)=Aexd — (t/7)?], t—oe. (5)
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1

X 10° time steps, stopping before the system starts crystalliz-
ing. This simulation time would correspond to a 150 ns
simulation for argon.

A renewal process representing the atomic dynamics in
the liquid can be constructed so that each renewal time in-
terval corresponds to the time a particle spends in a dynami-
cal trap. This is identical to the first-passage time, in the
6 | parlance of Allegriniet al.[18], but differs formally from the
waiting time of Doliwa and Heuef19] and Dennyet al.
[20], which focuses on hops between energy basins. We say
that particlei is trapped as long as its displacement

di()=[ri(t)=ri(0)| (€)

measured starting from an arbitrary initial positig(0) re-
mains less than a certain threshold vatlyg. The moment
t=ty, of surpassing the threshold is counted as a renewal
and the value of;(0) is reset tar;(ty,) as well as the time
origin for the next trap.
The corresponding trap-time distributiqeee Fig. 4 is
not particularly sensitive to the choice @f, as long as it is
of the order of the effective atomic diameter. To be specific,
we choosely,,=27/Qy~0.88[43], whereQy is the position
of the main peak in the static structure fac&KQ) and ne-
glect the temperature dependence of this length scale. A
threshold of~0.88 is about four times larger than the critical
value estimated by Allegrirgt al. in a binary Lennard-Jones
o 5 system. While the focus of R€f18] is on the inertial regime,
vt 10 10 which takes place at small distances, on the order of 0.1
atomic radius, we are interested in the atomic displacement
FIG. 3. (a) Autocorrelation functiorC(t) of the coarse-grained leading to a change in the configuration. Figui@)4also
orbit o(t), Eq. (2), with r=3.83(solid line) and the stretched ex- shows in the inset that the trap-time distribution is exponen-
ponential fit to the long-time part oE(t) with 7.~1250 andg. tial at a temperature well above the melting poirf,,(
~0.58 (dashed ling The inset shows the same curves, but with a=0,70+0.05) and its long-time tail well agrees with a
logarithmic vertical axis(b) The same as ife), but for the renewal  stretched exponential fit witl8,~0.71 in the supercooled
process computer ge_nerated with the renewal time_s distributed afegime. In order to be considered as a fully Markovian pro-
cording to Eq.(4) with 7,=5 and Bo=0.4. In this case the cegs we also assess the correlation between subsequent trap-
stretched exponential fit t6(t) is with 7.~69 andf.~0.54. ping time intervals, as was done for the coupled map lattice.
Comparing trap distributions considering only the subset of
events following traps of various length, again, we find no
Having established the correspondence between the distigorrelation between renewal time intervals. The valuggf
bution of time intervals of renewal processes and their autoagrees well with3=0.70+0.05 for the self part of the inter-
correlation functions, we now show that a renewal processnediate scattering functiofRg(Qg,t) calculated at the same
can also be identified in a supercooled liquid, and it appearsemperature and for the same length sdder the definition
to provide a simple and elegant description for the stretchedf F4(Q,t) see, e.g., Ref.44].] F4(Qg,t) for the Z2 liquid
exponential relaxation. In order to do so, we have performedbehaves similarly to the same quantity calculated for the su-
molecular dynamics simulations of a 16 000-particle singlepercooled Dzugutov liquifi45] and is not shown here.
component system where the interactions between the par- These results appear at odds with the analysis of Allegrini
ticles are described by a pair potential labeled Z2 in Refet al, who report a power-law distribution for the long-time
[40]. This potential is similar to that introduced initially by tail of the renewal timg18], although admitting that the
Dzugutov[41] but provides a longer-lived metastable super-asymptotic cutoff in the distributions is difficult to resolve
cooled state prior to crystallization. Otherwise the propertiesiumerically. Figure &) shows our simulation results at
of the Z2 liquid are similar to those of the Dzugutov liquid; =0.68 plotted on a log-log scale with a tentative fit of the
in particular, it exhibits dynamical heterogeneities formed bylong-time behavior. It is clear that the stretched exponential
short-lived clusters composed of connected icosahetth  provides a much better fit to the simulation data. This differ-
The simulations are performed &t 0.68, below the melt- ence between the two simulations might be due to both the
ing temperature of ,,=0.70=0.05, with a time step of 0.01 physical range of parameters and the precision of the simu-
in reduced Lennard-Jones unjig3]. We take measurements lation. First, Allegrini and collaborators focus on the inertial
over 16000 atoms with the number density-0.85 for 7  length scale while the results presented here require atomic

C. Molecular dynamics
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natural to expect that the trap conditidy{t) <dy,,, for d;(t)

from Eq. (9), is satisfied as long as particleis literally
trapped within a relatively stable environment—a “cage.”
The renewal process formed in this way and the associated
trap-time distribution and autocorrelation function provide a
simpler description of the structural relaxation in a con-
densed matter system than, e.g., the cage correlation function
[46] recently used to demonstrate the stretched exponential
relaxation in a Lennard-Jones massively defective crystal.

.. In particular, traps in the coupled map lattice show only a
‘\.. very short spatial extension that does not seem to diverge as

10° (a) o ) the overall dynamics of the system slows down.#sgoes

"~ from 0.6> 3,>0.5to 0.4> B,>0.3, the longer traps go from

8 about 120 to more than 30000 time steps but the character-

istic time-averaged width of these traps only quadruples,

from two to eight sitegsee ). These observations are con-

sistent with the behavior of dynamical heterogeneities ob-

served in a number of model systefi7s8,16,42.

We note that the only model that rigorously derives the
stretched exponential long-time asymptotic behavior is that
of a random walker in a system with static trajsee, e.g.,
Ref.[1]). Referenc¢24] cites both upper47] and lowel{48]
bounds for the asymptotic behavior of the survival probabil-
ity. Both bounds have the sang but differentr. It is not
obvious, however, that the above theory directly applies to
the results of this work. Nevertheless, our results are ob-
tained in terms of first-passage statistical distributions of the
type encountered in the static-trap model, and the use of

= : similar mathematical techniques may shed more light on the
t 10 nature of the dynamics in the models presented here.
In conclusion, we focused on the relation between dy-

FIG. 4. (a) Dots: distributions of trap-time intervals for oW (  namical heterogeneities and stretched exponential relaxation
=0.68, each data point corresponds to an average over 500 tinig two models: a coupled chaotic oscillator system and a
steps and high temperaturenset, T=2). Dashed lines: corre- supercooled liquid. Without insisting that the former model
sponding stretched exponential fits with,=60+5, B,=0.71  represents the actual behavior of real liquids, we have shown
+0.05 and(insey 7o=1.22+0.05, Bo=1=0.002. (b) Dots: the  that the asymptotic long-time behavior of the autocorrelation
same as irfa) for T=0.68 presented on a log-log scale over a meshg,nction of a renewal process is a stretched exponential pro-
with logarithmic time |nFervaIs. Dashed Igne: the same a&jrfor vided that the distribution of the renewal time intervals)
T=0.68. Dash-dotted line: power lawl/t”. is also a stretched exponential at long times, i)
diffusion, not only thermal vibrations; second, focusing on a~exH —(t/7)*]. Using this relation, we have demonstrated
single temperature, our simulation uses a larger cell and avhat, at least in the two model systems considered here, the
erages over a time scale roughly six times longer. relaxation dynamics can be described in terms of well-

Denny et al. [20] also note that the distribution in Ref. defined dynamical traps, providing useful insight regarding
[18] may not be a power law. Although the waiting time the absence of a diverging static length scale at the glass
distribution in Ref.[20] differs formally from that studied transition.
here, at long times they can be comparable since the escape
of a particle from a sphere of radius of the order of the
atomic diameter is likely to correspond to the transition of
the phase point in the configuration space between energy
metabasins. We note, however, that the log-normal form of We thank C. Godrehe for his essential help in formally
the waiting time distribution proposed by Denetyal.results  relating the autocorrelation function to the distribution of
in a correlation function that can only lag@proximatedwith  renewal times and J. C. Phillips for discussions, correspon-
SER, whereas the stretched exponential first-passage-tinance, and valuable comments. We acknowledge partial sup-
distribution resultsin a COI’relaFion function that is also a port from the Natural Sciences and Engineering Councn Of
stretched exponential at long time. CanadgNSERQ as well as the Fonds Nature et Technologie
du Qudec. These calculations were performed mostly on the
computer of the Reeau Qukecois de Calcul de Haute Per-

As was shown in I, traps in coupled map lattices correformance(RQCHB. S.1.S. is grateful to EPSRC for support.
spond to ordered short-lived domains. In direct analogy, it idN.M. acknowledges support from the Research Corporation.
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