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Relationship between dynamical heterogeneities and stretched exponential relaxation
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Case Postale 6128, succursale Centre-ville, Montre´al, Québec, Canada, H3C 3J7
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We identify dynamical heterogeneities as an essential prerequisite for stretched exponential relaxation in
dynamically frustrated systems. This heterogeneity takes the form of ordered domains of finite but diverging
lifetime for particles in atomic or molecular systems, or spin states in magnetic materials. At the onset of the
dynamical heterogeneity, the distribution of time intervals spent in such domains or traps becomes stretched
exponential at long times. We rigorously show that once this is the case the autocorrelation function of the
renewal process formed by these time intervals is also a stretched exponential at long times.
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I. INTRODUCTION

Stretched exponential relaxation ~SER!, I (t);
exp@2(t/t)b#, describes the relaxation of pure glasses v
accurately, often over very wide ranges@1#. For example,
SER describes equally well stress experiments on amorp
Se, centered on 103 s, as well as spin-polarized neutron sc
tering experiments, centered on 1029 s, both with the same
value ofb, over a time range of more than 1012. SER also
accurately describes the stress relaxation of the super
ducting transition temperatures in the cuprates, probably
sociated with the two-gap domain structure revealed by h
resolution scanning tunneling microscopy@2#; moreover, the
measured value ofb is the predicted value, 3/5, for YBCO
by far the most extensively studied cuprate, with the highe
quality samples. The agreement is such that it has rece
been proposed that the SER be used as an independent
sure of sample quality in these materials@3#. Phillips’ review
@1# gives many more examples and demonstrates the po
of SER as a guide to understanding the dynamical prope
of intrinsic glasses, especially network glasses. One of
most spectacular examples was the successful predictio@4#
of the long- and short-preparation-time values ofb of ortho-
terphenyl ~OTP!, as measured by multidimensional NMR
OTP is the purest organic glass former available comm
cially; the predicted values were 0.43 and 0.60, and the
served values were 0.42 and 0.59.

It appears that SER may arise as a result of spatial in
mogeneities that are quenched into macroscopically p
non-phase-separated glasses on a microscopic scale as
or sinks that appear as part of the glass-forming process.
existence of these inhomogeneities is difficult to detect
perimentally, but they readily account for SER, and pred
correctly the values ofb in many experiments@1#. Dynami-
cal heterogeneities have been seen experimentally and
merically in glasses and supercooled liquids@5,6#, spin-glass
models@7,8#, Lennard-Jones alloy mixtures with ellipsoid
probes@9#, as well as in coupled chaotic systems such
diode-resonator arrays@10#. In particular, the concept of dy
namical heterogeneities has emerged as critical for the
scription of the microscopic dynamics associated with
dramatic slowing down of the relaxation and diffusion pr
1063-651X/2003/68~4!/041110~7!/$20.00 68 0411
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cesses as the temperature approachesTg , the glass-transition
temperature@11–13#.

These spatial heterogeneities occur over time scales
are long with respect to the basic unit time of the system
one step in coupled maps and a lattice vibration in sup
cooled liquids—but shorter than the macroscopic relaxati
where materials are known to be homogeneous. As the t
perature or the driving force is decreased, these regions
come more and more stable and might overtake the wh
sample at a transition temperature. Although the nature
spatial heterogeneities and their relation to the macrosc
dynamics remain incompletely understood, there is a con
erable amount of work that relates directly to this issue. T
mode-coupling theory describes the dynamics from the
uid phase into the supercooled regime and makes quan
tive predictions that have been verified numerically in ma
systems@14,15#. It cannot yet describe accurately the ve
long time behavior in the supercooled regime, however@14#.
Numerically, dynamical heterogeneities have been stud
using a wide range of criteria tied to various aspects of t
feature@5,16,17#. Recently, however, some groups have f
cused on the renewal or mean first-passage time@18# and the
waiting-time distribution, which provide some link to th
structure of the energy landscape@19,20#.

Although both the dynamical heterogeneities and
stretched exponential behavior are characteristics of m
frustrated systems~e.g., supercooled liquids@21#!, it is not
clear what the relation between these two properties is
this paper, we address this question and show that dynam
heterogeneities can be directly responsible for the obse
tion of stretched exponential relaxation in coupled map
tices. We also show that these results are applicable to su
cooled liquids and can provide a microscopic basis for
stretched exponential relaxation in these systems, in line w
the observations of Dennyet al. on the long time dynamics
of metabasin hopping@20#.

Recently, Huntet al. found that the distribution of the
renewal time of a certain stochastic process measured
one-dimensional lattice of coupled diode resonators could
fitted to a stretched exponential function over six orders
magnitude@10#. Simulations on a related model of nonline
maps diffusively coupled via short range interactions sh
©2003 The American Physical Society10-1
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that the fit can be extended to more than nine orders of m
nitude, ruling out any other power law or simple combin
tion of pure exponentials@10,22#. The quality of the fit in this
system is sufficient to distinguish the region of the parame
space where the dynamics is described by a power-law
tribution coupled with an exponential cutoff from the rea
stretched exponential distributions.~Reference@22# contains
background information important for understanding the
sults of the present work and will be referred to as I in t
following.!

These simulations I also demonstrated the importanc
the effect of the system’s size on its dynamics. Wh
stretched exponentials are sufficiently robust and are
served even in some small samples, the quality of such fi
much poorer than in the big samples. This is in direct an
ogy with real experimental results and supports the obse
tion that the quality of the samples is crucial for obtaini
unambiguous stretched exponential behavior and meanin
values of the exponentb @1,3#.

Using simulations on this and other models, as well
some analytical results, we show here that~1! the stochastic
process studied in Ref.@10# and I can be identified with a
renewal process@23#, ~2! a stretched exponential distributio
of the renewal time implies a similar shape for the decay
the two-point autocorrelation function, and~3! renewal pro-
cesses are present in a supercooled liquid and play a ce
role in its dynamics.

Granted the universal features of SER, readers unfam
with chaos theory and coupled maps may not see imm
ately the relevance of these mathematical tools to un
standing the dynamical properties of supercooled liquids
glasses. Even the successful predictions of the trap~sink!
model@1,24# appear to be unexpected. For instance, the
vival probability of a random walker in the presence of ra
domly distributed static traps crosses over from exponen
to SER only at longer times where very few (;10230 for
10% traps! of the walkers have survived@25#. In our ex-
amples of steady-state dynamics in coupled maps, the an
gous crossover in trap-time distributionsr(t) occurs near
1021 to 10223max$r(t)%, depending on the value of a con
trol parameter. Even the latter number is small compare
the crossovers observed, for example, for relaxation of
first peak in the structure factor in molecular dynamics sim
lations ~MDSs! of crystallization-avoiding soft sphere mix
tures@26#, which occur near 3/4 of the maximum value. T
reason for these differences is that the systems chosen
MDSs already represent prepared states with strong g
forming tendencies. The random walker with random tra
model contains spatial inhomogeneities, which we will sh
represent an essential feature necessary for SER, and w
are absent from some popular models of static glass struc
such as mode-coupling theory@27#. That model does no
contain the collapse of phase space that occurs as the l
is supercooled to the glass transition, and that is why S
appears only at very long times. However, it does contain
correct dimensional dependence of diffusive behavior t
leads to the relationb5d/(d12), which is important for
comparisons to experiment. That the one-dimensio
coupled map lattice discussed here reaches a steady
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much more rapidly than the random walker is a clear indi
tion that this model is physically relevant. The way in whic
this happens was illustrated in Fig. 8 of I: the surviving p
riodic domains are those that have avoided chaotic regio

We also emphasize that in this simple model the beha
of the stretching exponentb as a function of a control pa
rameterr is similar to the dependence ofb on the tempera-
ture in both three-~3D! @28# and one-dimensional~1D! @8#
spin-glass models. This similarity captures not only t
qualitative tendency forb to decrease with decreasingr ~or
T), but also the quantitative agreement in the low-r ~or low-
T) limit b'1/3. The same lowest value ofb was obtained in
studies of random walks on fractals@29–31#.

II. RESULTS

A. Properties of the coupled map model

The nonlinear model of Ref.@10#, used to reproduce
qualitatively the experimental system, is a one-dimensio
chain ofN diffusively coupled nonlinear deterministic map
f (x), with a coupling constanta and periodic boundary con
ditions. The time evolution of this system is discrete and
described by the following iterative equation:

xn~ t11!5~12a! f „xn~ t !…1
a

2
$ f „xn21~ t !…1 f „xn11~ t !…%,

~1!

which, given initial conditions xn(0) for each site n
51,2, . . . ,N, generates a time series$xn(t)%. The interac-
tion is totalistic and involves only the nearest neighbo
Following I, in this study we use the logistic mapf (x)
5rx(12x).

Following the analysis of the experimental data, the s
chastic process of interest is represented by a coarse-gra
variable defined as

sn~ t !5sgn@xn~ t !2xthr#, t50,2,4, . . . , ~2!

where the quantityxn(t) is defined in Eq.~1! and xthr is a
certain threshold value. The basic dynamics of the coup
oscillators being period 2, the analysis is also done over e
~or odd! time steps.

This model shows a stretched exponential distribution
the renewal~or trap! times, which are defined in Sec. II B
over a wide range of the control parameterr, which plays a
role akin to temperature as can be seen in Fig. 1. This fig
shows the stretching exponentb0 and the time scalet0 as
functions of the control parameterr. The values ofb0 and
t0 were obtained by least-squares fitting of the long-tim
part of the trap-time distributions for a chain ofN510 000
coupled logistic mapsf (x)5rx(12x) with the expression
A exp@2(t/t0)

b0#. Although b0(r ) and t0(r ) are nonmono-
tonic, the overall behavior is similar to the results in both 3
@28# and 1D@8# spin-glass models. This broad similarity ca
tures not only the qualitative tendency forb to decrease with
decreasingr ~or T), but also the quantitative agreement
the low-r ~or low-T) limit b'1/3, the same limit as tha
obtained in studies of random walks on fractals@29–31#.
0-2



ed

is
d

on

in

the
on,
me
is

led
he
it

ase

e-

ran-
time

f
ess

lest
abil-
y
rob-

al
o-

e-

eity
ins
ion
sses

ous
port

s and
ally
de-

cal
ro-
er-
ely,
ns

a

-
th

he

th

ice
the

ap

RELATIONSHIP BETWEEN DYNAMICAL . . . PHYSICAL REVIEW E 68, 041110 ~2003!
Although the bifurcation diagram for a site in the coupl
map lattice Fig. 1~d! appears to be uniform with respect tor
down tor'3.8275, the nonmonotonicity ofb0(r ) andt0(r )
most probably arises from the fact that for the isolated log
tic map and the values ofr ,4 chaotic orbits are intersperse
with period cascades as seen in Fig. 1~c!, i.e., the approach to
full chaos asr goes to 4 is not uniform.~For an explanation
of the concept of bifurcation diagrams, see, e.g., Ref.@32#.!
Interestingly, the lowest value ofb0 is attained within the
widest window of the period-3 cascade in the bifurcati
diagram of the uncoupled logistic map. About and belowr
53.82, in the coupled map chain, very narrow chaotic w

FIG. 1. b0 ~a! and t0 ~b! as functions of the logistic map pa
rameterr. Dots correspond to the least-squares-fit values and
thin solid line is drawn as a guide to the eye. The vertical das
lines demarcate the discontinuities inb0(r ) andt0(r ). They corre-
spond very well to the positions of the periodic cascades in
bifurcation diagram of the uncoupled logistic map shown in~c!. ~d!
shows the bifurcation diagram for a site in the coupled map latt
Inset in~b! magnifies the right hand side of the main plot where
variation oft0 with r is not distinguishable. The accuracy ofb0 and
t0 obtained by a least-squares fit to the long-time part of the tr
time distribution is within 15%.
04111
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dows are also interspersed with periodic ones, and
stretched exponential behavior of the trap-time distributi
with b0 greater than or about 1/3, is recovered only for so
values ofr. This interesting behavior suggests that SER
uncovering an additional aspect of the dynamics of coup
map lattices. A full analysis of this behavior lies outside t
framework of this paper, but we plan to return to studying
elsewhere.

In other models and experiments, the time scalet grows
monotonically with decreasing temperature. It is not the c
here, although the values oft0 are greatest at the low-r ~and
low-b0) end, following the general trend observed els
where.

B. Renewal processes in coupled maps

The stochastic processsn(t) is a renewal process@23#
provided that the time intervals~renewal times! between two
subsequent zero crossings are statistically independent
dom variables. We tested the independence of these
intervals for the present model, Eq.~2!, by calculating the
distributions of the time intervals following time intervals o
a specified length. The distributions were identical regardl
of the length of the preceding time intervals.

In general, a renewal process is defined so thats(t)5
11 for t0,t<t1 , s(t)521 for t1,t<t2 , s(t)511 for
t2,t<t3, and so on. The renewal processes are the simp
possible stochastic processes readily susceptible of prob
ity theoretical analysis@33#. The dynamics represented b
such processes can be understood in terms of transition p
abilities between the two possible statess561 @34#.

In I, it is shown that the existence of very long renew
time intervalstn112tn associated with the stretched exp
nential distribution can be attributed to the presence of tim
limited ordered domains~or traps! with a dominant spatial
period of four sites. Figure 2~a! shows a typical distribution
of the renewal time intervals~or trap times! for this model.

These results suggest that the dynamical heterogen
manifested by the presence of time-limited ordered doma
could be at the origin of the stretched exponential relaxat
in supercooled liquids and glasses, and the renewal proce
could provide a simple picture for describing heterogene
dynamics in these condensed phases. In order to sup
these two affirmations, we first need to show that~1! there is
a one-to-one correspondence between renewal processe
their time autocorrelation functions, because experiment
measurable relaxation responses are mathematically
scribed by autocorrelation functions of certain dynami
variables and not directly by nonobservable renewal p
cesses, and~2! the renewal processes are present in sup
cooled liquids and glasses and can be calculated effectiv
exhibiting unambiguous stretched exponential distributio
of renewal time intervals.

The relation between the autocorrelation function

C~ t ![^s~ t8!s~ t81t !& t8 ~3!

of a renewal processs(t) and the distributionr(t) of time
intervals tn112tn between the zero crossings~or, in other
words, renewals! of this process was recently studied for
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range of distributions@23#. Following this approach, Go
drèche and Luck also showed@35# that C(t) corresponding
to the stretched exponential distribution

r~ t !5
b0

t0G~b0
21!

exp@2~ t/t0!b0# ~4!

can also be represented by a stretched exponential at
times:

C~ t !'CSE~ t ![A exp@2~ t/t!b#, t→`. ~5!

We can Laplace transform the distribution of interva
r(t), obtaining a function with a small singular part,r̂(u)
512^t&u1•••1 r̂sing(u), u→0 @36#, where ^t&
5t0G(2/b0)/G(1/b0) is the first moment ofr(t). From Ref.
@23#, we also know that the Laplace transform of the au
correlation function is given by

FIG. 2. ~a! Second derivativeC9(t) of the autocorrelation func-
tion C(t) of the coarse-grained orbits(t), Eq. ~2!, with r 53.83
~solid line! compared to the asymptotic behaviorr(t)/^t& given by
Eq. ~8! ~dashed line!. Dash-dotted line shows the stretched expo
netial fit to the long-time part ofr(t) with t055969 and b0

50.3960.05. ~b! The same as in~a!, but for the renewal proces
computer generated with the renewal times distributed accordin
Eq. ~4! with t055 andb050.4. In this case, the lines correspon
ing to the dashed and dash-dotted lines in~a! coincide.
04111
ng
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Ĉeq~u!5
1

u S 12
2@12 r̂~u!#

^t&u@11 r̂~u!#
D . ~6!

Using the expression above forr̂(u), one finds, for the sin-
gular part of the correlation function at equilibrium,

Ĉeq,sing~u!'
r̂sing~u!

^t&u2
. ~7!

Since the behavior at large times is governed by its sing
part, we get

Ceq9 ~ t !'r~ t !/^t&. ~8!

This implies that for a stretched exponentialr(t) in the
asymptotic limitCeq(t)}r(t) @35#.

The range of relevance for this analytical result can
confirmed numerically by studying the statistical propert
of a computer-generated sequence of~pseudo!random num-
bers distribution according to the stretched exponential pr
ability density function~PDF! Eq. ~4!. Using the fundamen-
tal transformation law of probabilities@37#, given a
computer-generated sequence of~pseudo!random numbers
$u% distributed uniformly in the interval 0<u<1, we apply
a transformation rulet5t0@Q21(1/b0 ,u)#1/b0 so that the re-
sulting sequence$t% is distributed according to the stretche
exponential PDFr(t). In order to compute the inverse regu
larized incomplete gamma functionQ21(a,u), we used the
software from Refs.@38,39#.

Given a sequence of time intervals distributed accord
to a prescribed PDF, it is straightforward to construct t
corresponding renewal process and its autocorrelation fu
tion and second derivative. The second derivative is ca
lated numerically, after applying a smoothing function befo
each derivative to improve the quality of the operation.

The resultingC9(t) and C(t), shown in Figs. 2 and 3
respectively, demonstrate clearly that the correspondence
tweenr(t) and C9(t) holds for long times forC(t) calcu-
lated both for the coupled map lattice model, Eq.~1!, with
f (x)5rx(12x), r 53.83, a50.25, andN51000, and for a
renewal process where the renewal time-interval distribut
is stretched exponential by prescription.C9(t) obtained nu-
merically agrees withr(t)/^t&, Eq. ~8!, without any free pa-
rameter within a multiplicative factor of the order of unity

Interestingly, for the range measured,C(t) also follows
the stretched exponential form, albeit with somewhat diff
ent parameterstc and bc . This indicates that the true
asymptotic regime forC(t) or r(t) may be reached at longe
time with a gradual approach toward this long-time behav
This agrees with the theories~see, e.g.,@24#! where the
stretched exponential functions are accompanied by ti
dependent multiplicative factors. For practical purpos
however, it is remarkable that the stretched exponential fi
the correlation function agrees withC(t), starting with a
value well observed experimentally between 3/4 and
3max$C(t)%, and following with very high accuracy for sev
eral orders of magnitude to the regime beyond the reach
the experiments.
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C. Molecular dynamics

Having established the correspondence between the d
bution of time intervals of renewal processes and their au
correlation functions, we now show that a renewal proc
can also be identified in a supercooled liquid, and it appe
to provide a simple and elegant description for the stretc
exponential relaxation. In order to do so, we have perform
molecular dynamics simulations of a 16 000-particle sing
component system where the interactions between the
ticles are described by a pair potential labeled Z2 in R
@40#. This potential is similar to that introduced initially b
Dzugutov@41# but provides a longer-lived metastable sup
cooled state prior to crystallization. Otherwise the proper
of the Z2 liquid are similar to those of the Dzugutov liqui
in particular, it exhibits dynamical heterogeneities formed
short-lived clusters composed of connected icosahedra@42#.
The simulations are performed atT50.68, below the melt-
ing temperature ofTm50.7060.05, with a time step of 0.01
in reduced Lennard-Jones units@43#. We take measurement
over 16 000 atoms with the number densityr50.85 for 7

FIG. 3. ~a! Autocorrelation functionC(t) of the coarse-grained
orbit s(t), Eq. ~2!, with r 53.83 ~solid line! and the stretched ex
ponential fit to the long-time part ofC(t) with tc'1250 andbc

'0.58 ~dashed line!. The inset shows the same curves, but with
logarithmic vertical axis.~b! The same as in~a!, but for the renewal
process computer generated with the renewal times distributed
cording to Eq. ~4! with t055 and b050.4. In this case the
stretched exponential fit toC(t) is with tc'69 andbc'0.54.
04111
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3106 time steps, stopping before the system starts crysta
ing. This simulation time would correspond to a 150
simulation for argon.

A renewal process representing the atomic dynamics
the liquid can be constructed so that each renewal time
terval corresponds to the time a particle spends in a dyna
cal trap. This is identical to the first-passage time, in
parlance of Allegriniet al. @18#, but differs formally from the
waiting time of Doliwa and Heuer@19# and Dennyet al.
@20#, which focuses on hops between energy basins. We
that particlei is trapped as long as its displacement

di~ t !5ur i~ t !2r i~0!u ~9!

measured starting from an arbitrary initial positionr i(0) re-
mains less than a certain threshold valuedthr . The moment
t5t thr of surpassing the threshold is counted as a rene
and the value ofr i(0) is reset tor i(t thr) as well as the time
origin for the next trap.

The corresponding trap-time distribution~see Fig. 4! is
not particularly sensitive to the choice ofdthr as long as it is
of the order of the effective atomic diameter. To be speci
we choosedthr52p/Q0'0.88@43#, whereQ0 is the position
of the main peak in the static structure factorS(Q) and ne-
glect the temperature dependence of this length scale
threshold of'0.88 is about four times larger than the critic
value estimated by Allegriniet al. in a binary Lennard-Jone
system. While the focus of Ref.@18# is on the inertial regime,
which takes place at small distances, on the order of
atomic radius, we are interested in the atomic displacem
leading to a change in the configuration. Figure 4~a! also
shows in the inset that the trap-time distribution is expon
tial at a temperature well above the melting point (Tm
50.7060.05) and its long-time tail well agrees with
stretched exponential fit withb0'0.71 in the supercooled
regime. In order to be considered as a fully Markovian p
cess, we also assess the correlation between subsequen
ping time intervals, as was done for the coupled map latt
Comparing trap distributions considering only the subset
events following traps of various length, again, we find
correlation between renewal time intervals. The value ofb0
agrees well withb50.7060.05 for the self part of the inter
mediate scattering functionFs(Q0 ,t) calculated at the sam
temperature and for the same length scale.@For the definition
of Fs(Q,t) see, e.g., Ref.@44#.# Fs(Q0 ,t) for the Z2 liquid
behaves similarly to the same quantity calculated for the
percooled Dzugutov liquid@45# and is not shown here.

These results appear at odds with the analysis of Alleg
et al., who report a power-law distribution for the long-tim
tail of the renewal time@18#, although admitting that the
asymptotic cutoff in the distributions is difficult to resolv
numerically. Figure 4~b! shows our simulation results atT
50.68 plotted on a log-log scale with a tentative fit of th
long-time behavior. It is clear that the stretched exponen
provides a much better fit to the simulation data. This diff
ence between the two simulations might be due to both
physical range of parameters and the precision of the si
lation. First, Allegrini and collaborators focus on the inert
length scale while the results presented here require ato

c-
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S. I. SIMDYANKIN AND N. MOUSSEAU PHYSICAL REVIEW E68, 041110 ~2003!
diffusion, not only thermal vibrations; second, focusing on
single temperature, our simulation uses a larger cell and
erages over a time scale roughly six times longer.

Denny et al. @20# also note that the distribution in Re
@18# may not be a power law. Although the waiting tim
distribution in Ref.@20# differs formally from that studied
here, at long times they can be comparable since the es
of a particle from a sphere of radius of the order of t
atomic diameter is likely to correspond to the transition
the phase point in the configuration space between en
metabasins. We note, however, that the log-normal form
the waiting time distribution proposed by Dennyet al. results
in a correlation function that can only beapproximatedwith
SER, whereas the stretched exponential first-passage-
distribution results in a correlation function that is also
stretched exponential at long time.

III. CONCLUSION AND DISCUSSION

As was shown in I, traps in coupled map lattices cor
spond to ordered short-lived domains. In direct analogy, i

FIG. 4. ~a! Dots: distributions of trap-time intervals for low (T
50.68, each data point corresponds to an average over 500
steps! and high temperatures~inset, T52). Dashed lines: corre
sponding stretched exponential fits witht056065, b050.71
60.05 and~inset! t051.2260.05, b05160.002. ~b! Dots: the
same as in~a! for T50.68 presented on a log-log scale over a me
with logarithmic time intervals. Dashed line: the same as in~a! for
T50.68. Dash-dotted line: power law}1/t5.
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natural to expect that the trap conditiondi(t),dthr , for di(t)
from Eq. ~9!, is satisfied as long as particlei is literally
trapped within a relatively stable environment—a ‘‘cage
The renewal process formed in this way and the associ
trap-time distribution and autocorrelation function provide
simpler description of the structural relaxation in a co
densed matter system than, e.g., the cage correlation fun
@46# recently used to demonstrate the stretched expone
relaxation in a Lennard-Jones massively defective crysta

In particular, traps in the coupled map lattice show only
very short spatial extension that does not seem to diverg
the overall dynamics of the system slows down. Asb0 goes
from 0.6.b0.0.5 to 0.4.b0.0.3, the longer traps go from
about 120 to more than 30 000 time steps but the charac
istic time-averaged width of these traps only quadrupl
from two to eight sites~see I!. These observations are con
sistent with the behavior of dynamical heterogeneities
served in a number of model systems@7,8,16,42#.

We note that the only model that rigorously derives t
stretched exponential long-time asymptotic behavior is t
of a random walker in a system with static traps~see, e.g.,
Ref. @1#!. Reference@24# cites both upper@47# and lower@48#
bounds for the asymptotic behavior of the survival probab
ity. Both bounds have the sameb, but differentt. It is not
obvious, however, that the above theory directly applies
the results of this work. Nevertheless, our results are
tained in terms of first-passage statistical distributions of
type encountered in the static-trap model, and the use
similar mathematical techniques may shed more light on
nature of the dynamics in the models presented here.

In conclusion, we focused on the relation between d
namical heterogeneities and stretched exponential relaxa
in two models: a coupled chaotic oscillator system and
supercooled liquid. Without insisting that the former mod
represents the actual behavior of real liquids, we have sh
that the asymptotic long-time behavior of the autocorrelat
function of a renewal process is a stretched exponential
vided that the distribution of the renewal time intervalsr(t)
is also a stretched exponential at long times, i.e.,r(t)
'exp@2(t/t0)

b0#. Using this relation, we have demonstrat
that, at least in the two model systems considered here,
relaxation dynamics can be described in terms of w
defined dynamical traps, providing useful insight regard
the absence of a diverging static length scale at the g
transition.
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